

**A LANDOWNERS GUIDE TO
EROSION & SEDIMENT CONTROL
FOR SINGLE-FAMILY RESIDENCES
DISTURBING OVER 10,000 SF**

**SPECIAL REQUIREMENTS APPLY FOR ANY LAND
DISTURBING ACTIVITY DISTURBING ONE ACRE OR
MORE AND/OR WITHIN A SUBDIVISION**

**Patrick County Virginia Erosion & Sediment Control Authority
March, 2018**

Erosion & Sediment Control Minimum Standards for a Single-Family Residence Disturbing over 10,000 sf

Purpose

The following is a brief overview of responsibilities associated with any non-exempt land-disturbing activity. It is unlawful to create any land-disturbing activity that causes sediment to enter any stream, body of water, or encroach on adjoining property or properties. As a result, it is the property owner's ultimate responsibility to take all steps necessary to control runoff during such land-disturbing activity.

Requirement

Prior to construction of a single-family residence, the owner must contact the County Building Inspection Department and secure a building permit. As a pre-requisite to issuance of a building permit an assessment will be made as to the amount of land-disturbance that the construction of the residence will create. If the amount of land-disturbance will be in excess of 10,000 sf the owner must obtain a land-disturbing permit from the County's ESC Office. As a part of the land-disturbing permit, an "Agreement in Lieu of a Plan" shall be executed by the owner. This agreement allows the owner of the proposed construction of a single-family residence to obtain a land-disturbing permit without having to submit a formal erosion and sediment control site plan for approval. This agreement is not applicable to land-disturbing activities that disturb 10,000 sf or more and which will be used for commercial use. In such a case, it is required that a formal erosion and sediment control site plan and narrative be submitted to the County ESC Office for approval prior to the issuance of a land-disturbing permit.

General

The following are considered the minimum measures required in order to meet the requirements under an “Agreement in Lieu of a Plan” for the purpose of controlling onsite sediment and to prevent its deposition onto adjacent areas. Additional measures may be required if deemed necessary by the County ESC Office. All specified measures shall conform to the latest edition of the Virginia Erosion and Sediment Control Handbook (VESCH), a copy of which is available for review at the County ESC Office. These measures are the minimum necessary in order to meet the minimum standards that are required by both the Virginia Erosion and Sediment Control Law and Patrick County’s Erosion and Sediment Control Ordinance. In most cases, a construction entrance and perimeter controls shall be established prior to beginning any clearing, grading, or construction activities. Erosion and sediment control measures are to be maintained in good condition until the site is vegetated and the measures are removed from the site. All temporary erosion and sediment control measures shall be removed from the site within 30 days after a suitable stand of permanent vegetation has been established.

1. Construction Entrance

The construction entrance is to be constructed with VDOT #1 Stone and underlain with geotextile fabric. Location, width and length will be dictated by site conditions. Generally, the width shall not be less than 12 feet or greater than 20 feet. The length shall be sufficient to eliminate the tracking of mud onto the public streets. Generally, the length will not be less than 70 feet. Sediment shall be removed from public roads at the end of each workday by shoveling first and then sweeping. Street washing will be allowed only after sediment is removed in this manner. The construction entrance is to be utilized by all vehicular traffic entering or leaving the site. Construction entrances shall conform to the attached VESCH specification.

2. Perimeter Control

To prevent silt from leaving the site, a silt fence is to be installed along the entire perimeter of the planned site, excluding the construction entrance. The County's ESC Office may waive the installation of silt fence in those areas where it is apparent that the fence would serve no useful purpose. Silt fence shall conform to the attached VESCH specification. Alternate methods of perimeter controls that conform to the VESCH latest edition may be approved by the County ESC Office upon request of the owner. Any approval of alternate methods by the County ESC Office shall be made on a case by case basis and shall be based upon site specific conditions.

3. Vegetation/Stabilization

A temporary vegetative cover shall be applied within 7 days to all disturbed areas, including soil stockpiles, which are not at final grade but will remain dormant for longer than 14 days. Soil preparation and permanent seeding will be accomplished immediately after removing temporary vegetative cover and or soil stockpiles. A fast germinating seed appropriate for the time of year of planting will be used for all temporary seeding.

All disturbed areas shall be stabilized with permanent seeding within 7 days after completion of finish grading. Permanent seeding shall be applied to all disturbed areas that will be left dormant for more than 1 year.

Mulch (straw or fiber) shall be used in conjunction with all temporary and or permanent seeding measures. Mulch shall be used to stabilize all newly seeded areas until a uniform vegetated cover is established.

Temporary seeding, permanent seeding, and mulching shall conform to the attached VESCH specifications.

4. Construction Road Stabilization

Areas which are graded or used for construction vehicle traffic and parking purposes are especially susceptible to erosion. The exposed soil surface is continually disturbed by traffic, leaving no opportunity for vegetative stabilization of these areas. These areas also tend to collect and transport runoff along their surfaces during precipitation events. During wet weather, particularly during the winter season, they often become muddy quagmires which generate significant quantities of sediment that may pollute nearby streams or be transported off site on the wheels of vehicles. Dirt roads can become so unstable during wet weather that they can become virtually unusable.

Immediate stabilization of such areas with stone may cost money at the outset, but it may actually save money in the long run by increasing the usefulness of construction roads during wet weather and avoiding costly cleanup of sediment which has been deposited in off-site areas and costly repairs to adjacent properties as a result of sedimentation. Many construction roads will become permanent driveways at the finish of construction, which if paved would require base stone, so the installation of stone for these roads at the onset of construction will result in much of the base stone for paved driveways having already been in place, lessening the perceived cost of construction road stabilization. If the permanent driveway is to be stone, the same situation for paved driveways holds true, in that much of the required stone for the permanent driveway is already in place and may only require a fresh top coating of stone for permanent use.

Construction Road Stabilization requires that access roads and parking areas be wide enough for larger construction vehicles to remain within the confines of the road, drainage ditches be provided as needed and be constructed in accordance with VESCH Spec 3.17 (Stormwater Conveyance Channels), and that a sufficient layer of crushed stone (as much as six inches) be applied immediately after grading of the

parking areas or road. Filter fabric may be applied to the roadbed for additional stability in areas where the subgrade is wet.

Maintenance

Construction entrances shall be maintained in a condition which will prevent tracking or flow of mud or sediment onto public highways. This may require periodic top dressing with additional stone and or reworking the existing stone as conditions may demand.

Silt fence will be checked for undermining and deterioration at least once per week or immediately following each rain event whichever occurs first. Any required repairs shall be made immediately. Sediment deposited at silt fences shall be removed once the height of the sediment has reached $\frac{1}{2}$ the height of the silt fence.

All permanent or temporary seeded areas shall be checked regularly to ensure that a good stand of vegetation is maintained. Areas will be fertilized and re-seeded as needed.

Both temporary and permanent roads and parking areas may require periodic top dressing with new gravel. Seeded areas adjacent to roads and parking areas should be checked periodically to ensure that a vigorous stand of vegetation is maintained. Roadside ditches and other drainage structures should be checked regularly to ensure that they do not become clogged with silt or other debris.

Regular inspections will be performed by the County ESC Office and any additional ESC measures required, ESC measures that are not installed properly, and ESC measures that have not been maintained or are deficient shall be noted on an inspection report. All items noted on the inspection report shall be corrected prior to the correction deadline listed on the report.

For Technical Assistance:

Patrick County ESC Office: Mark A. Vernon
Combined ESC & SWM Administrator
Patrick County Administration Office,
Stuart VA
(276) 694-6094

Department of Environment Quality (DEQ):

Blue Ridge Regional Office, Roanoke VA
(540) 562-6700

STD & SPEC 3.02

TEMPORARY STONE CONSTRUCTION ENTRANCE

Definition

A stabilized stone pad with a filter fabric underliner located at points of vehicular ingress and egress on a construction site.

Purpose

To reduce the amount of mud transported onto paved public roads by motor vehicles or runoff.

Conditions Where Practice Applies

Wherever traffic will be leaving a construction site and move directly onto a public road or other paved area.

Planning Considerations

Minimum Standard #17 (MS #17) requires that provisions be made to minimize the transport of sediment by vehicular traffic onto a paved surface. Construction entrances provide an area where a significant amount of mud can be removed from construction vehicle tires before they enter a public road and, just as important, the soil adjacent to the paved surface can be kept intact. A filter fabric liner is used as a "separator" to minimize the dissipation of aggregate into the underlying soil due to construction traffic loads. If the action of the vehicles traveling over the gravel pad is not sufficient to remove the majority of the mud or there exists an especially sensitive traffic situation on the adjacent paved road, the tires must be washed before the vehicle enters the public road. If washing is necessary, provisions must be made to intercept the wash water and trap the sediment so it can be collected and stabilized. Construction entrances should be used in conjunction with the stabilization of construction roads (see Std. & Spec. 3.03, CONSTRUCTION ROAD STABILIZATION) to reduce the amount of mud picked up by construction vehicles and to do a better job of mud removal. Other innovative techniques for accomplishing the same purpose (such as a bituminous entrance) can be utilized, but only after specific plans and details are submitted to and approved by the appropriate Plan-Approving Authority.

Design Criteria

Aggregate Size

VDOT #1 Coarse Aggregate (2- to 3-inch stone) should be used.

Entrance Dimensions

The aggregate layer must be at least 6 inches thick; a minimum three inches of aggregate should be placed in a cut section to give the entrance added stability and to help secure filter cloth separator. It must extend the full width of the vehicular ingress and egress area and have a minimum 12-foot width. The length of the entrance must be at least 70 feet (see Plate 3.02-1).

Washing

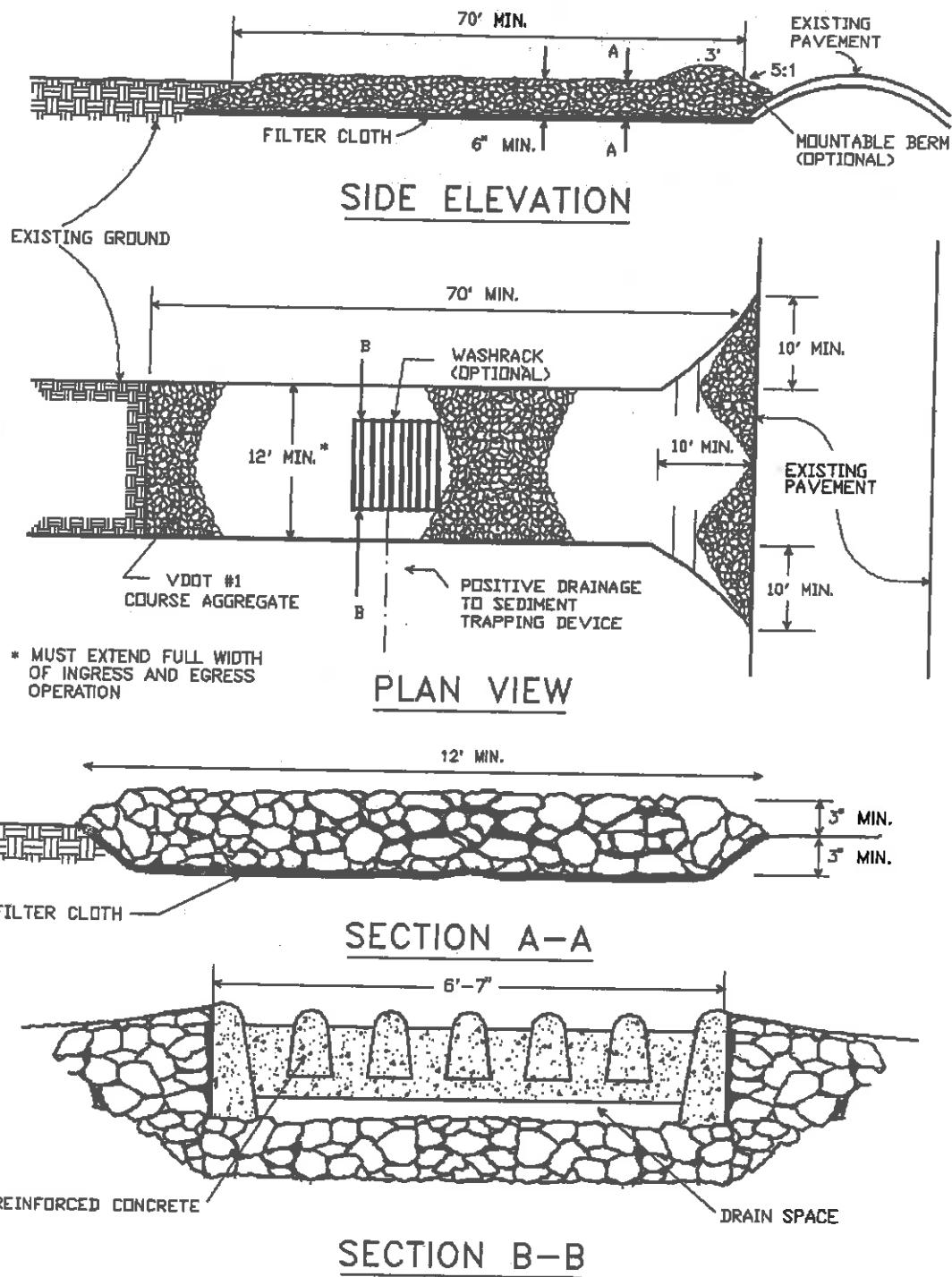
If conditions on the site are such that the majority of the mud is not removed by the vehicles traveling over the stone, then the tires of the vehicles must be washed before entering the public road. Wash water must be carried away from the entrance to a approved settling area to remove sediment. All sediment shall be prevented from entering storm drains, ditches, or watercourses. A wash rack may also be used to make washing more convenient and effective (see Plate 3.02-1).

Location

The entrance should be located to provide for maximum utilization by all construction vehicles.

Construction Specifications

The area of the entrance must be excavated a minimum of 3 inches and must be cleared of all vegetation, roots, and other objectionable material. The filter fabric underliner will then be placed the full width and length of the entrance.


Following the installation of the filter cloth, the stone shall be placed to the specified dimensions. If wash racks are used, they should be installed according to manufacturer's specifications. Any drainage facilities required because of washing should be constructed according to specifications. Conveyance of surface water under entrance, through culverts, shall be provided as required. If such conveyance is impossible, the construction of a "mountable" berm with 5:1 slopes will be permitted.

The filter cloth utilized shall be a woven or nonwoven fabric consisting only of continuous chain polymeric filaments or yarns of polyester. The fabric shall be inert to commonly encountered chemicals and hydrocarbons, be mildew and rot resistant, and conform to the physical properties noted in Table 3.02-A.

Maintenance

The entrance shall be maintained in a condition which will prevent tracking or flow of mud onto public rights-of-way. This may require periodic top dressing with additional stone or the washing and reworking of existing stone as conditions demand and repair and/or cleanout of any structures used to trap sediment. All materials spilled, dropped, washed, or tracked from vehicles onto roadways or into storm drains must be removed immediately. The use of water trucks to remove materials dropped, washed, or tracked onto roadways will not be permitted under any circumstances.

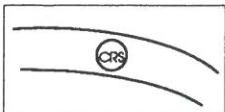
STONE CONSTRUCTION ENTRANCE

Source: Adapted from 1983 Maryland Standards for Soil Erosion and Sediment Control, and Va. DSWC

Plate 3.02-1

TABLE 3.02-A

CONSTRUCTION SPECIFICATIONS
FOR FILTER CLOTH UNDERLINER


<u>Fabric Properties¹</u>	<u>Light-Duty Entrance² (Graded Subgrade)</u>	<u>Heavy-Duty Entrance³ (Rough Graded)</u>	<u>Test Method</u>
Grab Tensile Strength (lbs.)	200	220	ASTM D1682
Elongation at Failure (%)	50	220	ASTM D1682
Mullen Burst Strength (lbs.)	190	430	ASTM D3786
Puncture Strength (lbs.)	40	125	ASTM D751 (modified)
Equivalent Opening Size (mm)	40-80	40-80	U.S. Standard Sieve CW-02215

¹ Fabrics not meeting these specifications may be used only when design procedure and supporting documentation are supplied to determine aggregate depth and fabric strength.

² Light Duty Entrance: Sites that have been graded to subgrade and where most travel would be single axle vehicles and an occasional multi-axle truck. Examples of fabrics which can be used are: Trevira Spunbond 1115, Mirafi 100X, Typar 3401, or equivalent.

³ Heavy Duty Entrance: Sites with only rough grading and where most travel would be multi-axle vehicles. Examples of fabrics which can be used are: Trevira Spunbond 1135, Mirafi 600X, or equivalent.

STD & SPEC 3.03

**CONSTRUCTION ROAD
STABILIZATION****Definition**

The temporary stabilization of access roads, subdivision roads, parking areas, and other on-site vehicle transportation routes with stone immediately after grading.

Purposes

1. To reduce the erosion of temporary roadbeds by construction traffic during wet weather.
2. To reduce the erosion and subsequent regrading of permanent roadbeds between the time of initial grading and final stabilization.

Conditions Where Practice Applies

Wherever stone-base roads or parking areas are constructed, whether permanent or temporary, for use by construction traffic.

Planning Considerations

Areas which are graded for construction vehicle transport and parking purposes are especially susceptible to erosion. The exposed soil surface is continually disturbed, leaving no opportunity for vegetative stabilization. Such areas also tend to collect and transport runoff waters along their surfaces. During wet weather, they often become muddy quagmires which generate significant quantities of sediment that may pollute nearby streams or be transported off site on the wheels of construction vehicles. Dirt roads can become so unstable during wet weather that they are virtually unusable.

Immediate stabilization of such areas with stone may cost money at the outset, but it may actually save money in the long run by increasing the usefulness of the road during wet weather.

Permanent roads and parking areas should be paved as soon as possible after grading. However, it is understandable that weather conditions or the potential for damage may not make paving feasible in the early phases of the development project. As an alternative, the early application of stone may solve potential erosion and stability problems and eliminate later regrading costs. Some of the stone will also probably remain in place for use as part of the final base course in the construction of the road.

Specifications

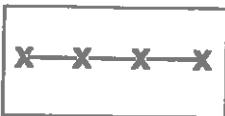
Temporary Access Roads and Parking Areas

1. Temporary roads shall follow the contour of the natural terrain to the extent possible. Slopes should not exceed 10 percent.
2. Temporary parking areas should be located on naturally flat areas to minimize grading. Grades should be sufficient to provide drainage but should not exceed 4 percent.
3. Roadbeds shall be at least 14 feet wide for one-way traffic and 20 feet wide for two-way traffic.
4. All cuts and fills shall be 2:1 or flatter to the extent possible.
5. Drainage ditches shall be provided as needed and shall be designed and constructed in accordance with STORMWATER CONVEYANCE CHANNEL, Std. & Spec. 3.17.
6. The roadbed or parking surface shall be cleared of all vegetation, roots and other objectionable material.

7. A 6-inch course of VDOT #1 Coarse Aggregate shall be applied immediately after grading or the completion of utility installation within the right-of-way. Filter fabric may be applied to the roadbed for additional stability. Design specifications for filter fabric can be found within Std. & Spec. 3.02, TEMPORARY STONE CONSTRUCTION ENTRANCE. In "heavy duty" traffic situations (see Table 3.02-A), stone should be placed at an 8- to 10-inch depth to avoid excessive dissipation or maintenance needs.

Permanent Roads and Parking Areas

Permanent roads and parking areas shall be designed and constructed in accordance with applicable VDOT or local criteria except that an initial base course of gravel of at least 6 inches shall be applied immediately following grading.

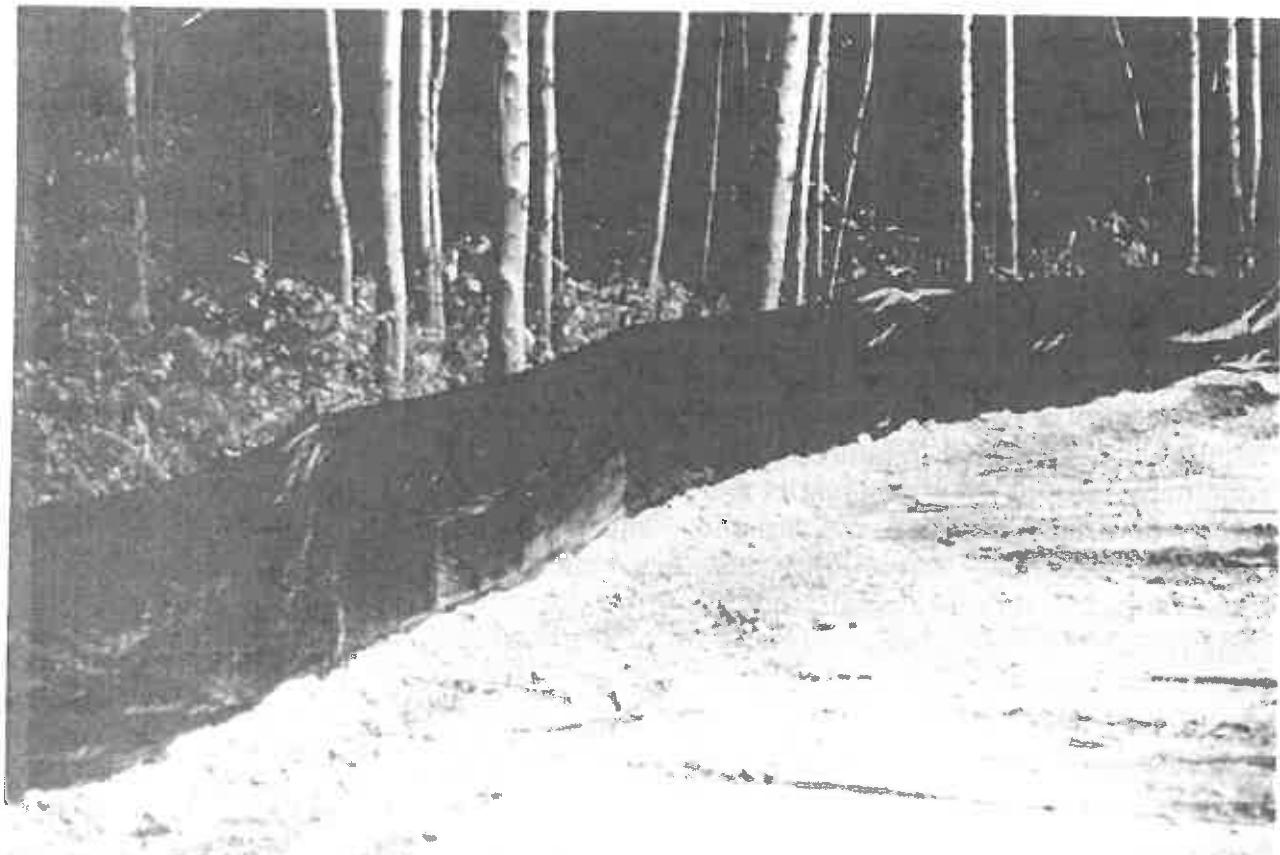

Vegetation

All roadside ditches, cuts, fills and disturbed areas adjacent to parking areas and roads shall be stabilized with appropriate temporary or permanent vegetation according to the applicable standards and specifications contained in this handbook.

Maintenance

Both temporary and permanent roads and parking areas may require periodic top dressing with new gravel. Seeded areas adjacent to the roads and parking areas should be checked periodically to ensure that a vigorous stand of vegetation is maintained. Roadside ditches and other drainage structures should be checked regularly to ensure that they do not become clogged with silt or other debris.

STD & SPEC 3.05


SILT FENCE

Definition

A temporary sediment barrier consisting of a synthetic filter fabric stretched across and attached to supporting posts and entrenched.

Purposes

1. To intercept and detain small amounts of sediment from disturbed areas during construction operations in order to prevent sediment from leaving the site.
2. To decrease the velocity of sheet flows and low-to-moderate level channel flows.

Conditions Where Practice Applies

1. Below disturbed areas where erosion would occur in the form of sheet and rill erosion.
2. Where the size of the drainage area is no more than one quarter acre per 100 feet of silt fence length; the maximum slope length behind the barrier is 100 feet; and the maximum gradient behind the barrier is 50 percent (2:1).
3. In minor swales or ditch lines where the maximum contributing drainage area is no greater than 1 acre and flow is no greater than 1 cfs.
4. Silt fence will not be used in areas where rock or some other hard surface prevents the full and uniform depth anchoring of the barrier.

Planning Considerations

Laboratory work at the Virginia Highway and Transportation Research Council (VHTRC) has shown that silt fences can trap a much higher percentage of suspended sediments than straw bales, though silt fence passes the sediment-laden water slower. Silt fences are preferable to straw barriers in many cases because of their durability and potential cost savings. While the failure rate of silt fences is lower than that of straw barriers, many instances have been observed where silt fences are improperly installed, inviting failure and sediment loss. The installation methods outlined here can improve performance and reduce failures.

As noted, flow rate through silt fence is significantly lower than the flow rate for straw bale barriers. This creates more ponding and hence more time for sediment to fall out. Table 3.05-A demonstrates these relationships.

Both woven and non-woven synthetic fabrics are commercially available. The woven fabrics generally display higher strength than the non-woven fabrics and, in most cases, do not require any additional reinforcement. When tested under acid and alkaline water conditions, most of the woven fabrics increase in strength, while the reactions of non-woven fabrics to these conditions are variable. The same is true of testing under extensive ultraviolet radiation. Permeability rates vary regardless of fabric type. While all of the fabrics demonstrate very high filtering efficiencies for sandy sediments, there is considerable variation among both woven and non-woven fabrics when filtering the finer silt and clay particles.

Design Criteria

1. No formal design is required. As with straw bale barriers, an effort should be made to locate silt fence at least 5 feet to 7 feet beyond the base of disturbed slopes with grades greater than 7%.

TABLE 3.05-A

TYPICAL FLOW RATES AND FILTERING
EFFICIENCIES OF PERIMETER CONTROL

<u>Material</u>	<u>Flow Rate (gal./sq.ft./min)</u>	<u>Filter Efficiency(%)</u>
Straw	5.6	67
Synthetic Fabric	0.3	97

Source: VHTRC

2. The use of silt fences, because they have such a low permeability, is limited to situations in which only sheet or overland flows are expected and where concentrated flows originate from drainage areas of 1 acre or less.
3. Field experience has demonstrated that, in many instances, silt fence is installed too short (less than 16 inches above ground elevation). The short fence is subject to breaching during even small storm events and will require maintenance "clean outs" more often. Properly supported silt fence which stands 24 to 34 inches above the existing grade tends to promote more effective sediment control.

Construction SpecificationsMaterials

1. Synthetic filter fabric shall be a pervious sheet of propylene, nylon, polyester or ethylene yarn and shall be certified by the manufacturer or supplier as conforming to the requirements noted in Table 3.05-B.
2. Synthetic filter fabric shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum of six months of expected usable construction life at a temperature range of 0° F to 120° F.
3. If wooden stakes are utilized for silt fence construction, they must have a diameter of 2 inches when oak is used and 4 inches when pine is used. Wooden stakes must have a minimum length of 5 feet.

TABLE 3.05-B

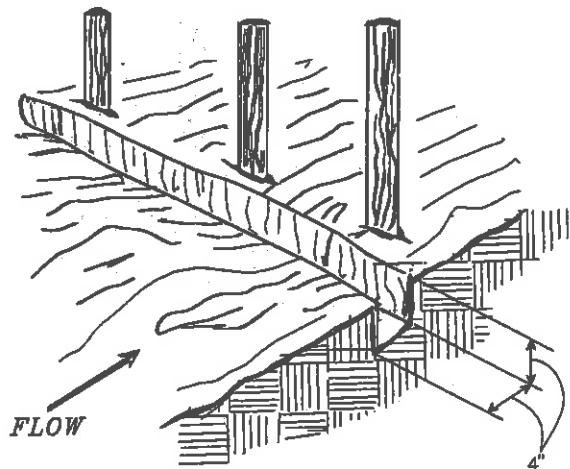
**PHYSICAL PROPERTIES OF
FILTER FABRIC IN SILT FENCE**

<u>Physical Property</u>	<u>Test</u>	<u>Requirements</u>
Filtering Efficiency	ASTM 5141	75% (minimum)
Tensile Strength at 20% (max.) Elongation*	VTM-52	Extra Strength - 50 lbs./linear inch (minimum)
		Standard Strength - 30 lbs./linear inch (minimum)
Flow Rate	ASTM 5141	0.2 gal./sq.ft./ minute (minimum)
Ultraviolet Radiation Stability %	ASTM-G-26	90% (minimum)

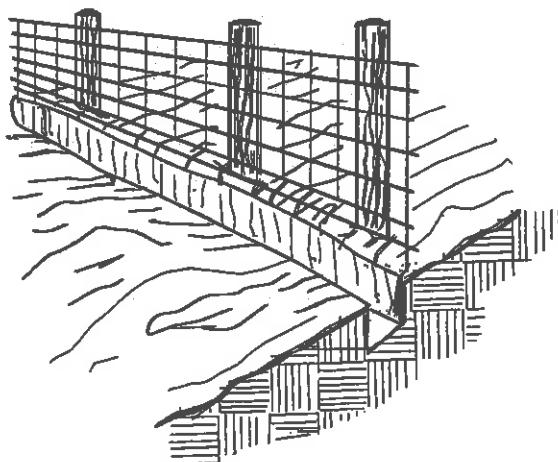
* Requirements reduced by 50% after six months of installation.

Source: VHTRC

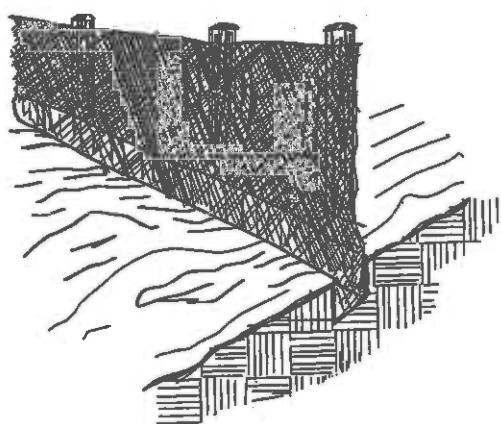
4. If steel posts (standard "U" or "T" section) are utilized for silt fence construction, they must have a minimum weight of 1.33 pounds per linear foot and shall have a minimum length of 5 feet.
5. Wire fence reinforcement for silt fences using standard-strength filter cloth shall be a minimum of 14 gauge and shall have a maximum mesh spacing of 6 inches.

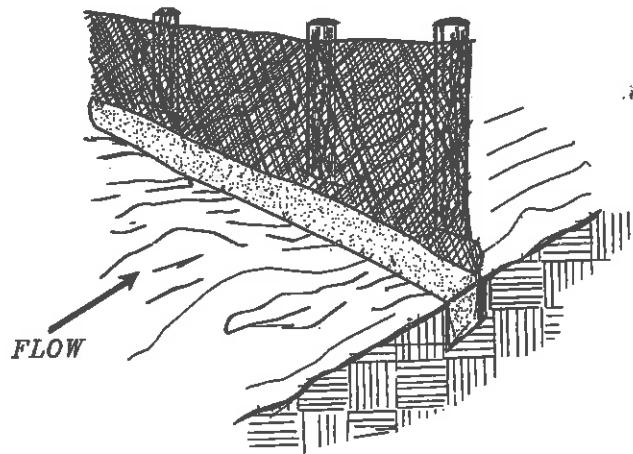

Installation

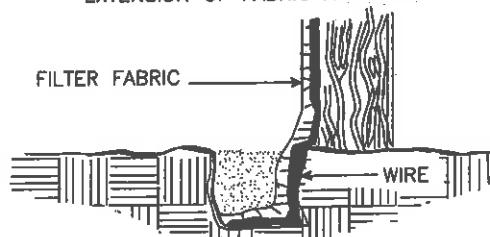
1. The height of a silt fence shall be a minimum of 16 inches above the original ground surface and shall not exceed 34 inches above ground elevation.


2. The filter fabric shall be purchased in a continuous roll cut to the length of the barrier to avoid the use of joints. When joints are unavoidable, filter cloth shall be spliced together only at a support post, with a minimum 6-inch overlap, and securely sealed.
3. A trench shall be excavated approximately 4-inches wide and 4-inches deep on the upslope side of the proposed location of the measure.
4. When wire support is used, standard-strength filter cloth may be used. Posts for this type of installation shall be placed a maximum of 10-feet apart (see Plate 3.05-1). The wire mesh fence must be fastened securely to the upslope side of the posts using heavy duty wire staples at least one inch long, tie wires or hog rings. The wire shall extend into the trench a minimum of two inches and shall not extend more than 34 inches above the original ground surface. The standard-strength fabric shall be stapled or wired to the wire fence, and 8 inches of the fabric shall be extended into the trench. The fabric shall not be stapled to existing trees.
5. When wire support is not used, extra-strength filter cloth shall be used. Posts for this type of fabric shall be placed a maximum of 6-feet apart (see Plate 3.05-2). The filter fabric shall be fastened securely to the upslope side of the posts using one inch long (minimum) heavy-duty wire staples or tie wires and eight inches of the fabric shall be extended into the trench. The fabric shall not be stapled to existing trees. This method of installation has been found to be more commonplace than #4.
6. ~~✓~~ If a silt fence is to be constructed across a ditch line or swale, the measure must be of sufficient length to eliminate endflow, and the plan configuration shall resemble an arc or horseshoe with the ends oriented upslope (see Plate 3.05-2). Extra-strength filter fabric shall be used for this application with a maximum 3-foot spacing of posts.
All other installation requirements noted in #5 apply.
7. The 4-inch by 4-inch trench shall be backfilled and the soil compacted over the filter fabric.
8. Silt fences shall be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized.

CONSTRUCTION OF A SILT FENCE (WITH WIRE SUPPORT)

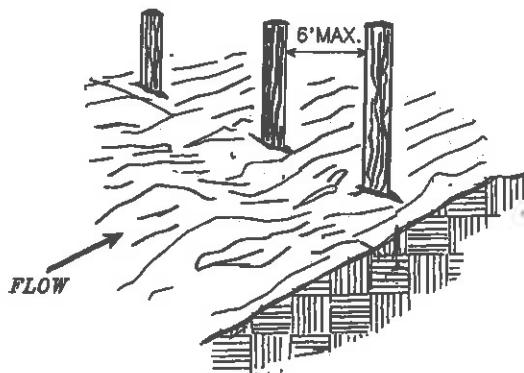

1. SET POSTS AND EXCAVATE A 4"X4"
TRENCH UPSLOPE ALONG THE LINE
OF POSTS.


2. STAPLE WIRE FENCING TO THE POSTS.

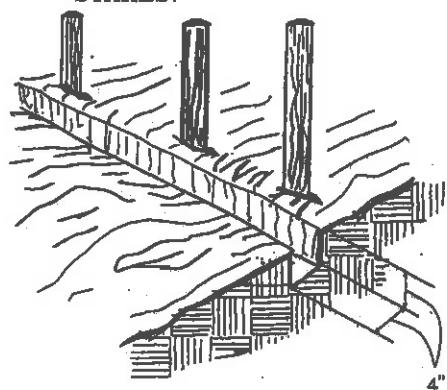

3. ATTACH THE FILTER FABRIC TO THE WIRE
FENCE AND EXTEND IT INTO THE TRENCH.

4. BACKFILL AND COMPACT THE
EXCAVATED SOIL.

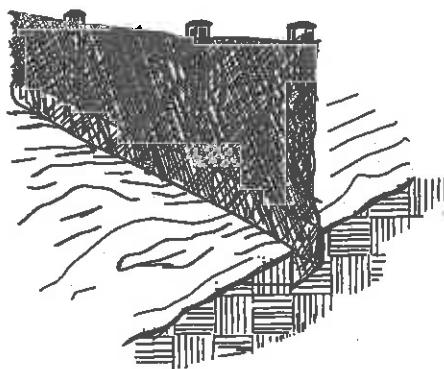
EXTENSION OF FABRIC AND WIRE INTO THE TRENCH.

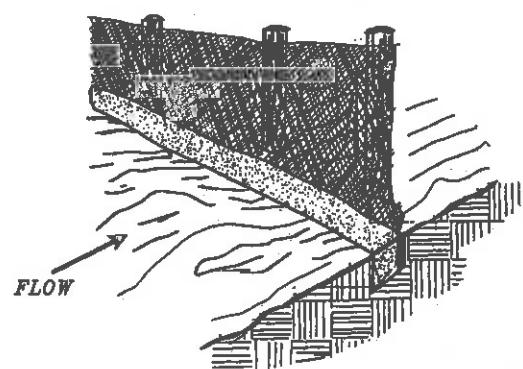


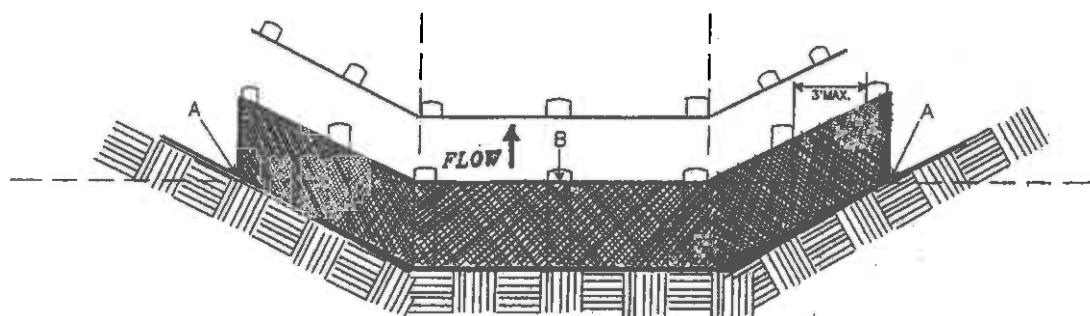
Source: Adapted from Installation of Straw and Fabric Filter Barriers for Sediment Control, Sherwood and Wyant


Plate 3.05-1

CONSTRUCTION OF A SILT FENCE (WITHOUT WIRE SUPPORT)


1. SET THE STAKES.


2. EXCAVATE A 4"X 4" TRENCH UPSLOPE ALONG THE LINE OF STAKES.


3. STAPLE FILTER MATERIAL TO STAKES AND EXTEND IT INTO THE TRENCH.

4. BACKFILL AND COMPACT THE EXCAVATED SOIL.

SHEET FLOW INSTALLATION
(PERSPECTIVE VIEW)

POINTS A SHOULD BE HIGHER THAN POINT B.

DRAINAGEWAY INSTALLATION
(FRONT ELEVATION)

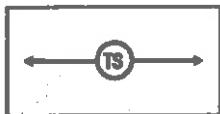

Source: Adapted from Installation of Straw and Fabric Filter Barriers for Sediment Control, Sherwood and Wyant

Plate 3.05-2

Maintenance

1. Silt fences shall be inspected immediately after each rainfall and at least daily during prolonged rainfall. Any required repairs shall be made immediately.
2. Close attention shall be paid to the repair of damaged silt fence resulting from end runs and undercutting.
3. Should the fabric on a silt fence decompose or become ineffective prior to the end of the expected usable life and the barrier still be necessary, the fabric shall be replaced promptly.
4. Sediment deposits should be removed after each storm event. They must be removed when deposits reach approximately one-half the height of the barrier.
5. Any sediment deposits remaining in place after the silt fence is no longer required shall be dressed to conform with the existing grade, prepared and seeded.

STD & SPEC 3.31

TEMPORARY SEEDING

Definition

The establishment of a temporary vegetative cover on disturbed areas by seeding with appropriate rapidly growing annual plants.

Purposes

1. To reduce erosion and sedimentation by stabilizing disturbed areas that will not be brought to final grade for a period of more than ~~30~~¹⁴ days.
2. To reduce damage from sediment and runoff to downstream or off-site areas, and to provide protection to bare soils exposed during construction until permanent vegetation or other erosion control measures can be established.

Conditions Where Practice Applies

Where exposed soil surfaces are not to be fine-graded for periods longer than 30 days. Such areas include denuded areas, soil stockpiles, dikes, dams, sides of sediment basins, temporary roadbanks, etc. (see MS #1 and MS #2). A permanent vegetative cover shall be applied to areas that will be left dormant for a period of more than 1 year.

Planning Considerations

Sheet erosion, caused by the impact of rain on bare soil, is the source of most fine particles in sediment. To reduce this sediment load in runoff, the soil surface itself should be protected. The most efficient and economical means of controlling sheet and rill erosion is to establish vegetative cover. Annual plants which sprout rapidly and survive for only one growing season are suitable for establishing temporary vegetative cover. Temporary seeding is encouraged whenever possible to aid in "controlling" construction sites.

Temporary seeding also prevents costly maintenance operations on other erosion control systems. For example, sediment basin clean-outs will be reduced if the drainage area of the basin is seeded where grading and construction are not taking place. Perimeter dikes will be more effective if not choked with sediment.

Temporary seeding is essential to preserve the integrity of earthen structures used to control sediment, such as dikes, diversions, and the banks and dams of sediment basins.

Proper seedbed preparation and the use of quality seed are important in this practice just as in permanent seeding. Failure to carefully follow sound agronomic recommendations will often result in an inadequate stand of vegetation that provides little or no erosion control.

Specifications

Prior to seeding, install necessary erosion control practices such as dikes, waterways, and basins.

Plant Selection

Select plants appropriate to the season and site conditions from Tables 3.31-B and 3.31-C. Note that Table 3.31-B presents plants which can be used without extensive evaluation of site conditions; Table 3.31-C presents more in-depth information on the plant materials.

Seedbed Preparation

To control erosion on bare soil surfaces, plants must be able to germinate and grow. Seedbed preparation is essential.

1. **Liming:** An evaluation should be conducted to determine if lime is necessary for temporary seeding. In most soils, it takes up to 6 months for a pH adjustment to occur following the application of lime. Therefore, it may be difficult to justify the cost of liming a temporary site, especially when the soil will later be moved and regraded. The following table may be used to determine the actual need along with suggested application rates.

TABLE 3.31-A	
LIMING REQUIREMENTS FOR TEMPORARY SITES	
<u>pH Test</u>	<u>Recommended Application of Agricultural Limestone</u>
below 4.2	3 tons per acre
4.2 to 5.2	2 tons per acre
5.2 to 6	1 ton per acre

Source: Va. DSWC

2. **Fertilizer:** Shall be applied as 600 lbs./acre of 10-20-10 (14 lbs./1,000 sq. ft.) or equivalent nutrients. Lime and fertilizer shall be incorporated into the top 2 to 4 inches of the soil if possible.
3. **Surface Roughening:** If the area has been recently loosened or disturbed, no further roughening is required. When the area is compacted, crusted, or hardened, the soil surface shall be loosened by discing, raking, harrowing, or other acceptable means (see SURFACE ROUGHENING, Std. & Spec. 3.29).
4. **Tracking:** Tracking with bulldozer cleats is most effective on sandy soils. This practice often causes undue compaction of the soil surface, especially in clayey soils, and does not aid plant growth as effectively as other methods of surface roughening.

Seeding

Seed shall be evenly applied with a broadcast seeder, drill, cultipacker seeder or hydroseeder. Small grains shall be planted no more than 1½ inches deep. Small seeds, such as Kentucky Bluegrass, should be planted no more than 1/4 inch deep. Other Grasses and Legumes should be planted from 1/4 inch to 1/2 inch deep.

Mulching

1. Seedings made in fall for winter cover and during hot and dry summer months shall be mulched according to MULCHING, Std. & Spec. 3.35, except that hydromulches (fiber mulch) will not be considered adequate. Straw mulch should be used during these periods.
2. Temporary seedings made under favorable soil and site conditions during optimum spring and fall seeding dates may not require mulch.

Re-seeding

Areas which fail to establish vegetative cover adequate to prevent rill erosion will be re-seeded as soon as such areas are identified.

TABLE 3.31-B

ACCEPTABLE TEMPORARY SEEDING PLANT MATERIALS

"QUICK REFERENCE FOR ALL REGIONS"

<u>Planting Dates</u>	<u>Species</u>	<u>Rate (lbs./acre)</u>
Sept. 1 - Feb. 15	50/50 Mix of Annual Ryegrass (<u>Lolium multi-florum</u>) & Cereal (Winter) Rye (<u>Secale cereale</u>)	50 - 100
Feb. 16 - Apr. 30	Annual Ryegrass 6000 (<u>Lolium multi-florum</u>)	60 - 100
May 1 - Aug 31	German Millet 6000 (<u>Setaria italica</u>)	50

Source: Va. DSWC

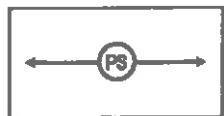
TABLE 3.31-C

TEMPORARY SEEDING PLANT MATERIALS, SEEDING RATES, AND DATES

SPECIES	SEEDING RATE			NORTH ^a			SOUTH ^b			PLANT CHARACTERISTICS
	Acre	1000 ft ²	3/1 to 4/30	5/1 to 8/15	8/15 to 11/1	2/15 to 4/30	5/1 to 9/1	9/1 to 11/15		
OATS (<i>Avena sativa</i>)	3 bu. (up to 100 lbs., not less than 50 lbs.)	2 lbs.	X	-	-	X	-	-	Use spring varieties (e.g., Noble).	
RYE ^d (<i>Secale cereale</i>)	2 bu. (up to 110 lbs., not less than 50 lbs.)	2.5 lbs.	X	-	X	X	-	X	Use for late fall seedings, winter cover. Tolerates cold and low moisture.	
GERMAN MILLET (<i>Setaria italica</i>)	50 lbs.	approx. 1 lb.	-	X	-	-	X	-	Warm-season annual. Dies at first frost. May be added to summer mixes.	
ANNUAL RYEGRASS ^c (<i>Lolium multi-florum</i>)	60 lbs.	1½ lbs.	X	-	X	X	-	X	May be added in mixes. Will mow out of most stands.	
WEEPING LOVEGRASS (<i>Eragrostis curvula</i>)	15 lbs.	5½ ozs.	-	X	-	-	X	-	Warm-season perennial. May bunch. Tolerates hot, dry slopes and acid, infertile soils. May be added to mixes.	
KOREAN LESPEDEZA ^c (<i>Lespedeza stipulacea</i>)	25 lbs.	approx. 1½ lbs.	X	X	-	X	X	-	Warm season annual legume. Tolerates acid soils. May be added to mixes.	

^a Northern Piedmont and Mountain region. See Plates 3.22-1 and 3.22-2.

^b Southern Piedmont and Coastal Plain.


^c May be used as a cover crop with spring seeding.

^d May be used as a cover crop with fall seeding.

X May be planted between these dates.

- May not be planted between these dates.

STD & SPEC 3.32

PERMANENT SEEDING

Definition

The establishment of perennial vegetative cover on disturbed areas by planting seed.

Purposes

1. To reduce erosion and decrease sediment yield from disturbed areas.
2. To permanently stabilize disturbed areas in a manner that is economical, adaptable to site conditions, and allows selection of the most appropriate plant materials.
3. To improve wildlife habitat.
4. To enhance natural beauty.

Conditions Where Practice Applies

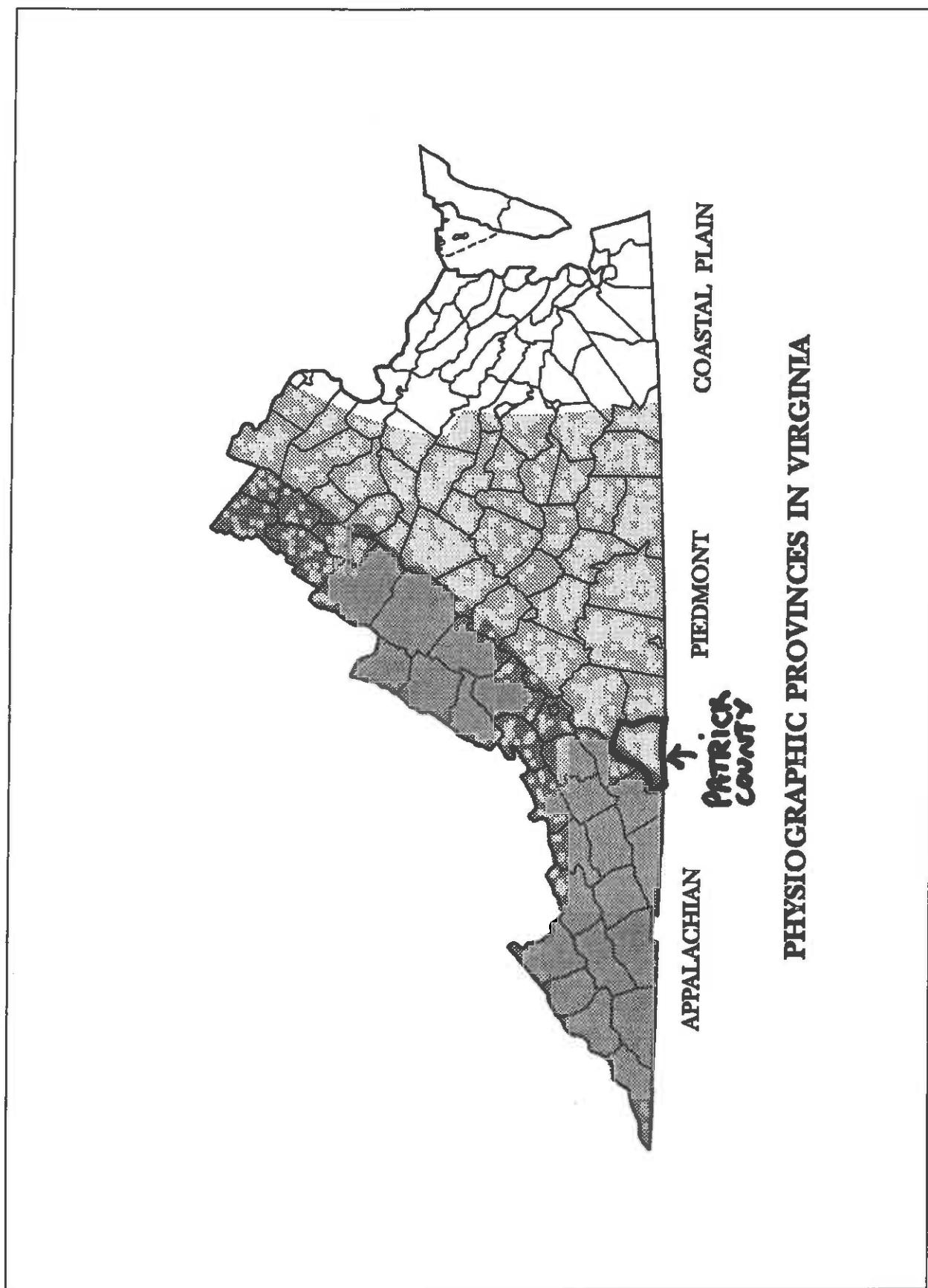
1. Disturbed areas where permanent, long-lived vegetative cover is needed to stabilize the soil.
2. Rough-graded areas which will not be brought to final grade for a year or more.

Planning Considerations

Vegetation controls erosion by reducing the velocity and the volume of overland flow and protecting the bare soil surface from raindrop impact.

Areas which must be stabilized after the land has been disturbed require vegetative cover. The most common and economical means of establishing this cover is by seeding grasses and legumes. Permanent vegetative covers must meet the requirements of Minimum Standard #3.

Advantages of seeding over other means of establishing plants include the small initial establishment cost, the wide variety of grasses and legumes available, low labor requirement, and ease of establishment in difficult areas.


Disadvantages which must be dealt with are the potential for erosion during the establishment stage, a need to reseed areas that fail to establish, limited periods during the year suitable for seeding, the potential need for weed control during the establishment phase, and a need for water and appropriate climatic conditions during germination.

There are so many variables in plant growth that an end product cannot be guaranteed. Much can be done in the planning stages to increase the chances for successful seeding. Selection of the right plant materials for the site, good seedbed preparation, and conscientious maintenance are important.

SELECTING PLANT MATERIALS: The factors affecting plant growth are climate, soils, and topography. In Virginia, there are three major physiographic regions that reflect changes in soil and topography. In selecting appropriate plant materials, one should take into account the characteristics of the physiographic region in which the project is located (see Plate 3.32-1).

PHYSIOGRAPHIC REGIONS:

Coastal Plain - Soils on the Coastal Plain are deeply weathered, stratified deposits of sand and clay. They are generally acidic and low in plant nutrients. The sandy soils are hot and droughty in summer. This region receives more rain and is warmer than the other regions of the state. The land is fairly level, and many areas are poorly drained. Warm season grasses traditionally perform well in these areas.

Source: Va. DSWC

Plate 3.32-1

Piedmont - Soils on the Piedmont plateau are highly variable. They tend to be shallow, with clayey subsoils. Piedmont soils are low in phosphorus. Soils derived from mica schist are highly erodible. Topography is rolling and hilly. The southern Piedmont has much the same climate as the Coastal Plain. Often referred to as the "transition zone" in planting. Contains areas that will support both warm or cool season grasses.

Appalachian and Blue Ridge Region - This region is divided into plateaus, mountains, and narrow valleys. Soils tend to be shallow and acid, and may erode rapidly on steep slopes. Shale slopes are often unstable and droughty. This area is colder and drier than the rest of the State. The rugged topography makes plant establishment difficult. Cool season grasses are normally specified in this region.

SOILS: On the whole, soils in Virginia always require some nitrogen (N) fertilization to establish plants. Phosphorus (P) and potassium (K) are usually needed. Except for some small pockets of shallow limestone soils, lime is universally needed.

Soils can be modified with lime and fertilizer, but climate cannot be controlled. For this reason, the State has been divided into two major climatic regions, referred to as the Northern Piedmont and Mountain Region and the Southern Piedmont and Coastal Plain Region, for grass and legume selection (see map, Plate 3.32-2).

Microclimate, or localized climate conditions, can affect plant growth. A south-facing slope is drier and hotter than a north-facing slope, and may require drought-tolerant plants. Shaded areas require shade-tolerant plants; the windward side of a ridge will be drier than the leeward, etc.

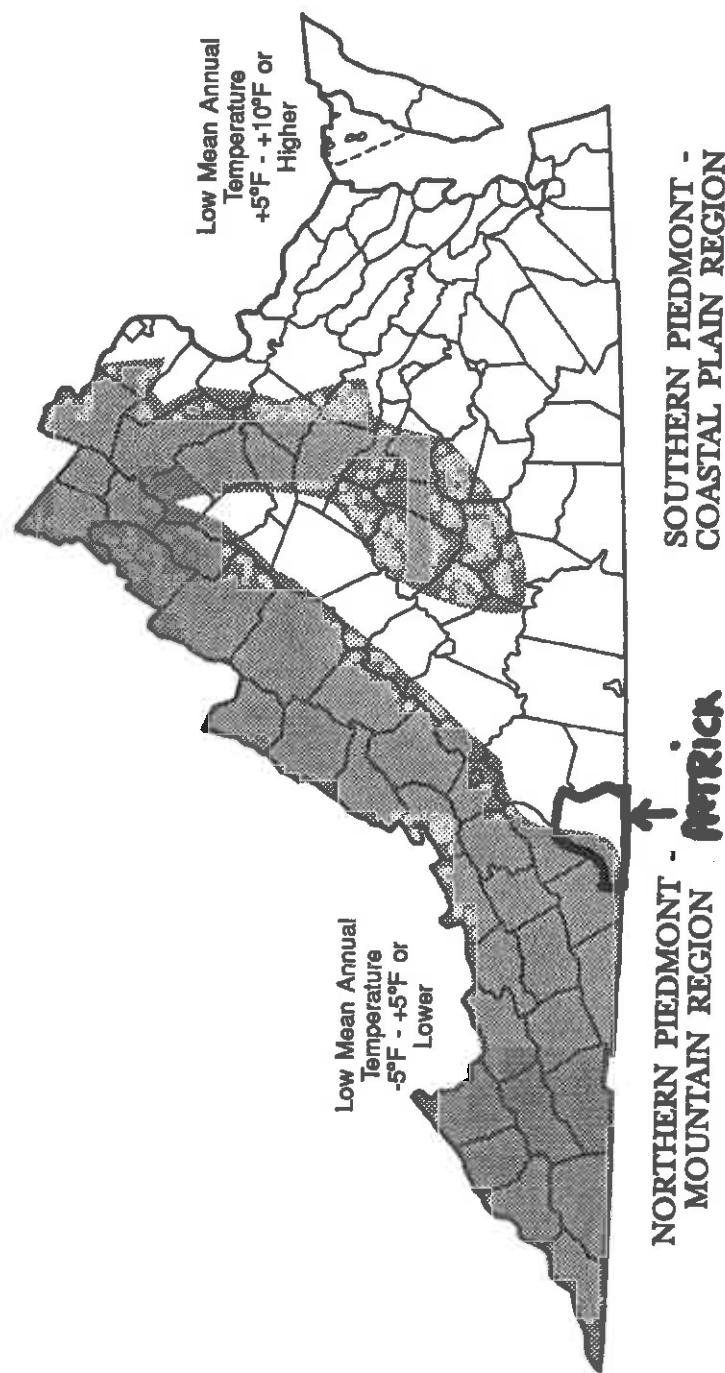
LAND USE: A prime consideration in selecting which plants to establish is the intended use of the land. All of these uses - residential, industrial, commercial, recreational - can be separated into two major categories: high-maintenance and low-maintenance.

High-maintenance areas will be mowed frequently, limed and fertilized regularly, and will either receive intense use (e.g., athletics) or require maintaining to an aesthetic standard (home lawns). Grasses used for these situations must be fine-leaved and attractive in appearance, able to form tight sod, and be long-lived perennials. They must be well-adapted to the geographic area where they are planted, because constant mowing puts turf under great stress. Sites where high-maintenance vegetative cover is desirable include homes, industrial parks, schools, churches, athletic playing surfaces as well as some recreational areas.

Low-maintenance areas will be mowed infrequently or not at all; lime and fertilizer may not be applied on a regular basis; the areas will not be subjected to intense use, nor required to have a uniform appearance. These plants must be able to persist with little maintenance over long periods of time. Grass and legume mixtures are favored for these sites because legumes are capable of fixing nitrogen from the air for their own use, and the use of the plants around them. Such mixed stands are better able to withstand adverse conditions.

Sites that would be suitable for low-maintenance vegetation include steep slopes, stream or channel banks, some commercial properties, and "utility turf" areas such as roadbanks.

Seedbed Preparation - The soil on a disturbed site must be modified to provide an optimum environment for seed germination and seedling growth. The surface soil must be loose enough for water infiltration and root penetration. The pH (acidity and alkalinity) of the soil must be such that it is not toxic and nutrients are available, usually between pH 6.0-7.0. Sufficient nutrients (added as fertilizer) must be present. After seed is in place, it must be protected with a mulch to hold moisture and modify temperature extremes, and to prevent erosion while seedlings are growing.


The addition of lime is equally as important as applying fertilizer. Lime is best known as a pH, or acidity, modifier, but it also supplies calcium and magnesium which are plant nutrients. Its effect on pH makes other nutrients more available to the plant. It can also prevent aluminum toxicity by making aluminum less soluble in the soil. Many soils in Virginia are high in aluminum, which stunts the growth of plant roots.

MAINTENANCE: Even with careful, well-planned seeding operations, failures can occur. When it is clear that plants have not germinated on an area or have died, these areas must be reseeded immediately to prevent erosion damage. However, it is extremely important to determine for what reason germination did not take place and make any corrective action necessary prior to reseeding the area. Healthy vegetation is the most effective erosion control available.

Specifications

Selection of Plant Materials

1. Selection of plant materials is based on climate, topography, soils, land use, and planting season. To determine which plant materials are best adapted to a specific site, use Tables 3.32-A and 3.32-B which describe plant characteristics and list recommended varieties.
2. Appropriate seeding mixtures for various site conditions in Virginia are given in Tables 3.32-C, 3.32-D and 3.32-E. These mixtures are designed for general use, and are known to perform well on the sites described. Check Tables 3.32-A and 3.32-B for recommended varieties.
3. A more extensive description of plant materials (grasses and legumes), their usage and pictorial representation can be found in Appendix 3.32-c.
4. When using some varieties of turfgrasses, the Virginia Crop Improvement Association (VCIA) recommended turfgrass mixtures may also be used. Consumer protection programs have been devised to identify quality seed of the varieties recommended by the Virginia Cooperative Extension Service. These will bear a label indicating

PLANT HARDINESS ZONES IN VIRGINIA FOR GRASSES AND LEGUMES

Source: Adapted from Virginia Climate Advisory, 1979.

Plate 3.32-2

that they are approved by the Association. Mixtures may be designed for a specific physiographic region or based on intended use. Special consideration is given to plant characteristics, performance, etc.

TABLE 3.32-A
CHARACTERISTICS OF COMMONLY SELECTED GRASSES

COMMON NAME (Botanical Name)	Life Cycle	Season	PH Range	Germination Time In Days	Optimum Germination Temperature (°F)	Winter Hardiness	Drought Tolerance	Soil Drainage Tolerance	Seeds Per Pound	Maintenance Requirements	Remarks	Suggested Varieties for Virginia
												Ky 31
TALL FESCUE (Festuca arundinacea)	P	C	5.5-6.2	10-14	60-85	F	F	M	SPD	225K	Low when used for erosion control; high when used in lawn	Better suited for erosion control and rough turf application.
TALL FESCUES (Improved)	P	C	5.5-6.2	10-14	60-85	F	G	M	SPD	220K	Responds well to high maintenance.	Excellent for lawn and fine turf.
KENTUCKY BLUEGRASS (Poa pratense)	P	C	6.0-6.5	14	60-75	G	P	M	SPD	2.2m	Needs fertile soil, favorable moisture. Requires several years to become well established.	Excellent for fine turfs-takes traffic, mowing. Poor drought/heat tolerance.
PERENNIAL RYEGRASS (Lolium perenne)	P	C	5.8-6.2	7-10	60-75	F	F	M-H	SPD	227K	Will tolerate traffic.	May be added to mixes. * Improved varieties will perform well all year.

KEY

A = Annual P = Perennial C = Cool Season Plant W = Warm Season Plant G = Good
 M = Medium L = Low SPD = Somewhat Poorly Drained MPD = Moderately Poorly Drained VP = Very Poor H = High
 PD = Poorly Drained VPD = Very Poorly Drained

TABLE 3.32-A (Continued)
CHARACTERISTICS OF COMMONLY SELECTED GRASSES

COMMON NAME (Botanical Name)	Life Cycle	Season	pH Range	Germination Time, In Days	Optimum Germination Temperature (°F)	Winter Hardiness	Drought Tolerance	Soil Drainage	Seeds Per Pound	Maintenance Requirements	REMARKS		Suggested Varieties for Virginia	
											Fertility	Tolerance		
HARD FESCUE (<i>Festuca</i> <i>Longifolia</i>)	P	C	5.0- 6.2	10- 14	60- 80	VG	G	L	MWD	400K	Grows well in sun or shade and will tolerate infertile soils; improved disease resistance.	Exceeds all fine fescues in most tests. Excellent for low-maintenance situations.	Reliant, Spartan, Aurora	
	CHEWINGS FESCUE	P	C	5.0- 6.2	10- 14	60- 80	VG	G	L	MWD	400K	Tolerates shade, dry infertile soils.	Poor traffic tolerance, less thatch than other fine fescues.	Flyer
FINE FESCUES	RED FESCUE (<i>Festuca</i> <i>Rubra</i>)	P	C	5.0- 6.2	10- 14	60- 80	VG	G	L	MWD	400K	Low to medium fertility requirements. Requires well-drained soil.	Spreads by rhizomes, tillers and stolons. Will not take traffic - very shade tolerant.	Long-fellow, Victory
	REED CANARYGRASS (<i>Phalaris arundinacea</i>)	P	C	5.8- 6.2	21	70- 85	G	G	M-H	VPD	530K	Do not mow closely or often.	Conservation cover in wet areas.	No named varieties

KEY

A = Annual P = Perennial C = Cool Season Plant W = Warm Season Plant G = Good F = Fair P = Poor VP = Very Poor PD = Poorly Drained SPD = Somewhat Poorly Drained M = Medium L = Low VPD = Very Poorly Drained VPD = Very Poorly Drained

TABLE 3.32-A (Continued)
CHARACTERISTICS OF COMMONLY SELECTED GRASSES

COMMON NAME (Botanical Name)	Maintenance Requirements										REMARKS	Suggested Varieties for Virginia
	Seeds Per Pound	Fertility	Drought Tolerance	Soil Drainage	Germination Time, In Days	Optimum Germination Temperature (°F)	Winter Hardiness	Root Depth	Root Depth	Root Depth		
REDDTOP (<i>Agrostis alba</i>)	P C 5.8-6.2	10	65-85 G	F L	PD	5m	Will tolerate poor, infertile soils; deep rooted.	Does well in erosion control mixes - not for lawns.	No named varieties.			
WEEPING LOVEGRASS (<i>Eragrostis curvula</i>)	P W 4.5-6.2	14	65-85 F-P G	L-M	SPD	1.5m	Low-fertility requirements; excellent drought tolerance.	Fast-growing, warm-season bunch grass. Excellent cover for erosion control.	No named varieties.			
BERMUDAGRASS (<i>Cynodon dactylon</i>)	P W 5.8-6.2	21	70-95 P	G	M-H	SPD	1.8m hulled	High nitrogen utilization, excellent drought tolerance. Some varieties adapted to western VA.	Common varieties used for erosion control. Hybrids used for fine turf.	See current VCIA list.		
ORCHARDGRASS (<i>Dactylis glomerata</i>)	P C 5.8-6.2	18	60-75 F	F M	SPD	625K	Does best on well-drained, loamy soil.	Good pasture selection - may be grazed.	Virginia origin or Potomac			

KEY

A = Annual P = Perennial C = Cool Season Plant W = Warm Season Plant G = Good
 F = Fair P = Poor VP = Very Poor H = High
 N = Medium L = Low SPD = Somewhat Poorly Drained MPD = Moderately Poorly Drained
 PD = Poorly Drained VPD = Very Poorly Drained

TABLE 3.32-A (Continued)
CHARACTERISTICS OF COMMONLY SELECTED GRASSES

COMMON NAME (Botanical Name)	Suggested Varieties for Virginia																			
	SEASON		PH RANGE		GERMINATION TIME IN DAYS		OPTIMUM GERMINATION TEMPERATURE (F)		WINTER HARDINESS		DROUGHT TOLERANCE		SOIL DRAINAGE TOLERANCE		SEEDS PER POUND		MAINTENANCE REQUIREMENTS		REMARKS	
ANNUAL RYEGRASS (Lolium multiflorum)	A	C	5.8- 6.2	7	60-70	G	P	M-H	SPD	227K	Will grow on most Virginia Soils. Do not use in fine-turf areas.	Will grow on most Virginia Soils. Do not use in fine-turf areas.	Will establish in most all Virginia soils. Do not use in fine-turf areas.	Will establish in most all Virginia soils. Do not use in fine-turf areas.	18K	Will establish in most all Virginia soils. Do not use in fine-turf areas.	May be added into mixes or established alone as temporary cover in spring and fall.	May be added into mixes or established alone as temporary cover in spring and fall.	No named varieties.	Abruzzi, Balboa
RYE (Secale cereale)	A	C	5.8- 6.2	7	55-70	VG	G	L-M	SPD	18K	Will establish in most all Virginia soils. Do not use in fine-turf areas.	Will establish in most all Virginia soils. Do not use in fine-turf areas.	Will establish in most all Virginia soils. Do not use in fine-turf areas.	Will establish in most all Virginia soils. Do not use in fine-turf areas.	220K	Establishes well during summer. Very low moisture requirements.	May be added to erosion-control mixes or established alone.	May be added to erosion-control mixes or established alone.	Common, German	
FOXTAIL MILLET (Setaria italica)	A	W	5.8- 6.2	10	65-85	VP	G	M	MWD	220K	Establishes well during summer. Very low moisture requirements.	220K	Establishes well during summer. Very low moisture requirements.	May be added to erosion-control mixes or established alone.	May be added to erosion-control mixes or established alone.	Common, German				

KEY

A = Annual P = Perennial C = Cool Season Plant W = Warm Season Plant G = Good
 F = Fair P = Poor Vp = Very Poor H = High
 M = Medium L = Low SPD = Somewhat Poorly Drained MPD = Moderately Poorly Drained
 VPD = Poorly Drained PD = Very Poorly Drained

TABLE 3.32-B
CHARACTERISTICS OF LEGUMES APPROPRIATE FOR EROSION CONTROL

COMMON NAME (Botanical Name)	Life Cycle	Season	PH Range	Germination Time in Days	Optimum Germination Temperature (°F)	Winter Hardiness	Drought Tolerance	Fertility	Soil Drainage	Seeds Per Pound	MAINTENANCE REQUIREMENTS	REMARKS	For Virginias Varieties
CROWNVETCH (<i>Coronilla varia</i>)	P	C	6.0- 6.5	14-21	70	G	VG	M	MWD	110K	Does best on well-drained soils. Minimum maintenance when established. May need phosphorus. Inoculation is essential.	Excellent for steep, rocky slopes. Produces colorful blooms in May/June. Slow to establish. Does best when seeded in spring.	Pennington Chesapeake Emerald
SERICEA LESPEDEZA (<i>Lespedeza cuneata</i>)	P	W	5.8- 6.2	21-28	70- 85	F	VG	L	MWD	335K	Grows in most well-drained soils. Low fertility requirements. Inoculation is essential.	Use hulled seed in spring; unhulled in fall. Very deep-rooted legume. Excellent choice for eastern Va.	Serecia Interstate
FLATPEA (Lathyrus silvestris)	P	C	5.0- 7.0	14-28	65- 75	G	G	L	PD	15K	Needs lime and high phosphorus. Good shade tolerance.	Tolerates acidic and wetter soils better than other legumes.	Lathco
BIRDSFOOT TREFOIL (<i>Lotus</i> <i>corniculatus</i>)	P	C	6.0- 6.5	7	65- 70	G	F	M	SPD	375K	Inoculation is essential. Grows in medium-fertile, slightly acid soils.	Grows better on poorly drained soils than most legumes. Poor drought/heat tolerance.	No named varieties.

KEY

A = Annual P = Perennial C = Cool Season Plant W = Warm Season Plant G = Good F = Fair P = Poor VP = Very Poor H = High
 M = Medium L = Low SPD = Somewhat Poorly Drained MPD = Moderately Poorly Drained PD = Poorly Drained VPD = Very Poorly Drained

TABLE 3.32-B (Continued)
CHARACTERISTICS OF LEGUMES APPROPRIATE FOR EROSION CONTROL

COMMON NAME (Botanical Name)	Life Cycle	Season	PH Range	Germination Time in Days	Optimum Germination Temperature (°F)	Winter Hardiness	Drought Tolerance	Fertility	Soil Drainage Tolerance	Seeds Per Pound	Maintenance Requirements	REMARKS		Suggested Varieties for Virginia								
												W	A	70-85	14	F	VG	L	MWD	200K	Will grow on almost any well-drained soil.	Choose Kobe for southeastern Va.; needs almost no nitrogen to survive.
ANNUAL LESPEDEZAS (<i>Lespedeza strata</i> , <i>L. stipulacea</i>)	P	C	6.0-6.5	7-14	70	G	F	M	SPD	275K	Needs high levels of phosphorus and potassium.											
RED CLOVER (<i>Trifolium pratense</i>)	P	C	6.0-6.5						PD	700K	Requires favorable moisture, fertile soils, high pH.											
WHITE CLOVER (<i>Trifolium repens</i>)	P	C	6.0-6.5	10	70	G	P	M														

KEY

A = Annual	P = Perennial	C = Cool Season Plant	W = Warm Season Plant	G = Good	F = Fair	P = Poor	VP = Very Poor	H = High
M = Medium	L = Low	SPD = Somewhat Poorly Drained	MPD = Moderately Poorly Drained	MPD = Poorly Drained	PD = Poorly Drained	VPD = Very Poorly Drained		

TABLE 3.32-C
SITE SPECIFIC SEEDING MIXTURES
FOR APPALACHIAN/MOUNTAIN AREA

	<u>Total Lbs.</u>
	<u>Per Acre</u>
<u>Minimum Care Lawn</u>	
- Commercial or Residential	200-250 lbs.
- Kentucky 31 or Turf-Type Tall Fescue	90-100%
- Improved Perennial Ryegrass *	0-10%
- Kentucky Bluegrass	0-10%
<u>High-Maintenance Lawn</u>	
Minimum of three (3) up to five (5) varieties of bluegrass from approved list for use in Virginia.	125 lbs.
<u>General Slope (3:1 or less)</u>	
- Kentucky 31 Fescue	128 lbs.
- Red Top Grass	2 lbs.
- Seasonal Nurse Crop **	<u>20 lbs.</u>
	150 lbs.
<u>Low-Maintenance Slope (Steeper than 3:1)</u>	
- Kentucky 31 Fescue	108 lbs.
- Red Top Grass	2 lbs.
- Seasonal Nurse Crop **	20 lbs.
- Crownvetch ***	<u>20 lbs.</u>
	150 lbs.

* Perennial Ryegrass will germinate faster and at lower soil temperatures than fescue, thereby providing cover and erosion resistance for seedbed.

** Use seasonal nurse crop in accordance with seeding dates as stated below:
 March, April through May 15th Annual Rye
 May 16th through August 15th Foxtail Millet
 August 16th through September, October Annual Rye
 November through February Winter Rye

*** If Flatpea is used, increase to 30 lbs./acre. All legume seed must be properly inoculated. Weeping Lovegrass may also be included in any slope or low-maintenance mixture during warmer seeding periods; add 10-20 lbs/acre in mixes.

TABLE 3.32-D
SITE SPECIFIC SEEDING MIXTURES FOR PIEDMONT AREA

	<u>Total Lbs. Per Acre</u>
<u>Minimum Care Lawn</u>	
- Commercial or Residential	175-200 lbs.
- Kentucky 31 or Turf-Type Tall Fescue	95-100%
- Improved Perennial Ryegrass	0-5%
- Kentucky Bluegrass	0-5%
<u>High-Maintenance Lawn</u>	200-250 lbs.
- Kentucky 31 or Turf-Type Tall Fescue	100%
<u>General Slope (3:1 or less)</u>	
- Kentucky 31 Fescue	128 lbs.
- Red Top Grass	2 lbs.
- Seasonal Nurse Crop *	<u>20 lbs.</u>
	150 lbs.
<u>Low-Maintenance Slope (Steeper than 3:1)</u>	
- Kentucky 31 Fescue	108 lbs.
- Red Top Grass	2 lbs.
- Seasonal Nurse Crop *	20 lbs.
- Crownvetch **	<u>20 lbs.</u>
	150 lbs.

- * Use seasonal nurse crop in accordance with seeding dates as stated below:
- | | |
|--|----------------|
| February 16th through April | Annual Rye |
| May 1st through August 15th | Foxtail Millet |
| August 16th through October | Annual Rye |
| November through February 15th | Winter Rye |

** Substitute Sericea lespedeza for Crownvetch east of Farmville, Va. (May through September use hulled Sericea, all other periods, use unhulled Sericea). If Flatpea is used in lieu of Crownvetch, increase rate to 30 lbs./acre. All legume seed must be properly inoculated. Weeping Lovegrass may be added to any slope or low-maintenance mix during warmer seeding periods; add 10-20 lbs./acre in mixes.

Seedbed Requirements

Vegetation should not be established on slopes that are unsuitable due to inappropriate soil texture, poor internal structure or internal drainage, volume of overland flow, or excessive steepness, until measures have been taken to correct these problems.

To maintain a good stand of vegetation, the soil must meet certain minimum requirements as a growth medium. The existing soil must have these characteristics:

1. Enough fine-grained material to maintain adequate moisture and nutrient supply.
2. Sufficient pore space to permit root penetration. A bulk density of 1.2 to 1.5 indicates that sufficient pore space is present. A fine granular or crumb-like structure is also favorable.
3. Sufficient depth of soil to provide an adequate root zone. The depth to rock or impermeable layers such as hardpans shall be 12 inches or more, except on slopes steeper than 2:1 where the addition of soil is not feasible.
4. A favorable pH range for plant growth. If the soil is so acidic that a pH range of 6.0-7.0 cannot be attained by addition of pH-modifying materials, then the soil is considered an unsuitable environment for plant roots and further soil modification would be required.
5. Freedom from toxic amounts of materials harmful to plant growth.
6. Freedom from excessive quantities of roots, branches, large stones, large clods of earth, or trash of any kind. Clods and stones may be left on slopes steeper than 3:1 if they do not significantly impede good seed soil contact.

If any of the above criteria cannot be met, i.e., if the existing soil is too coarse, dense, shallow, acidic, or contaminated to foster vegetation, then topsoil shall be applied in accordance with TOPSOILING, Std. & Spec. 3.30.

Necessary structural erosion and sediment control practices will be installed prior to seeding. Grading will be carried out according to the approved plan.

Surfaces will be roughened in accordance with SURFACE ROUGHENING, Std. & Spec. 3.29.

Soil Conditioners

In order to modify the texture, structure, or drainage characteristics of a soil, the following materials may be added to the soil:

1. Peat is a very costly conditioner, but works well. If added, it shall be sphagnum moss peat, hypnum moss peat, reed-sedge peat or peat humus, from fresh-water sources. Peat shall be shredded and conditioned in storage piles for at least six months after excavation.
2. Sand shall be clean and free of toxic materials. Sand modification is ineffective unless you are adding 80 to 90% sand on a volume basis. This is extremely difficult to do on-site. If this practice is considered, consult a professional authority to ensure that it is done properly.
3. Vermiculite shall be horticultural grade and free of toxic substances. It is an impractical modifier for larger acreage due to expense.
4. Raw manure is more commonly used in agricultural applications. However, when stored properly and allowed to compost, it will stabilize nitrogen and other nutrients. Manure, in its composted form, is a viable soil conditioner; however, its use should be based on site-specific recommendations offered by a professional in this field.
5. Thoroughly rotted sawdust shall have 6 pounds of nitrogen added to each cubic yard and shall be free of stones, sticks, and toxic substances.
6. The use of treated sewage sludge has benefitted from continuing advancements in its applications in the agricultural community. When composted, it offers an alternative soil amendment. Limitations include a potentially undesirable pH (because of lime added during the treatment process) and the possible presence of heavy metals. This practice should be thoroughly evaluated by a professional and be used in accordance with any local, state, and federal regulations.

Lime and Fertilizer

Lime and fertilizer needs should be determined by soil tests. Soil tests may be performed by the Cooperative Extension Service Soil Testing Laboratory at VPI&SU, or by a reputable commercial laboratory. Information concerning the State Soil Testing Laboratory is available from county extension agents. Reference Appendix 3.32-d for liming applications (in lbs.) needed to correct undesirable pH for various soil types.

Under unusual conditions where it is not possible to obtain a soil test, the following soil amendments will be applied:

Lime

Coastal Plain: 2 tons/acre pulverized agricultural grade limestone (90 lbs./1000 ft.²).

Piedmont and Appalachian Region: 2 tons/acre pulverized agricultural grade limestone (90 lbs./1000 ft.²).

Note: An agricultural grade of limestone should always be used.

Fertilizer

Mixed grasses and legumes: 1000 lbs./acre 10-20-10 or equivalent nutrients (23 lbs./1000 ft.²).

Legume stands only: 1000 lbs./acre 5-20-10 (23 lbs./ 1000 ft.²) is preferred; however, 1000 lbs./acre of 10-20-10 or equivalent may be used.

Grass stands only: 1000 lbs./acre 10-20-10 or equivalent nutrients, (23 lbs./1000 ft.²).

Other fertilizer formulations, including slow-release sources of nitrogen (preferred from a water quality standpoint), may be used provided they can supply the same amounts and proportions of plant nutrients.

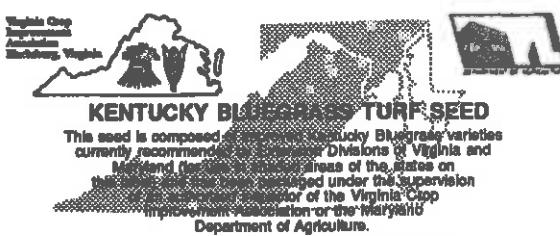
Incorporation - Lime and fertilizer shall be incorporated into the top 4-6 inches of the soil by discing or other means whenever possible. For erosion control, when applying lime and fertilizer with a hydroseeder, apply to a rough, loose surface.

Seeding

1. *** Certified seed will be used for all permanent seeding whenever possible.** Certified seed is inspected by the Virginia Crop Improvement Association or the certifying agency in other states. The seed must meet published state standards and bear an official "Certified Seed" label (see Appendix 3.32-a).

Kentucky Bluegrass Seed Mixtures

**MARYLAND - VIRGINIA
RECOMMENDED**



* Recommended Area is Shaded.

V 33505

Kentucky Bluegrass Seed Blends

**VIRGINIA - MARYLAND
RECOMMENDED**

V 25004

2. Legume seed should be inoculated with the inoculant appropriate to the species. Seed of the Lespedezas, the Clovers and Crownvetch should be scarified to promote uniform germination.
3. Apply seed uniformly with a broadcast seeder, drill, culti-packer seeder, or hydroseeder on a firm, friable seedbed. Seeding depth should be 1/4 to 1/2 inch.
4. To avoid poor germination rates as a result of seed damage during hydroseeding, it is recommended that if a machinery breakdown of 30 minutes to 2 hours occurs, 50% more seed be added to the tank, based on the proportion of the slurry remaining in the tank. Beyond 2 hours, a full rate of new seed may be necessary.

Often hydroseeding contractors prefer not to apply lime in their rigs as it is abrasive. In inaccessible areas, lime may have to be applied separately in pelletized or liquid form. Surface roughening is particularly important when hydroseeding, as a roughened slope will provide some natural coverage of lime, fertilizer and seed.

Legume inoculants should be applied at five times the recommended rate when inoculant is included in the hydroseeder slurry.

Mulching

All permanent seeding must be mulched immediately upon completion of seed application. Refer to MULCHING, Std. & Spec. 3.35.

Maintenance of New Seedings

In general, a stand of vegetation cannot be determined to be fully established until it has been maintained for one full year after planting.

Irrigation: New seedings should be supplied with adequate moisture. Supply water as needed, especially late in the season, in abnormally hot or dry weather, or on adverse sites. Water application rates should be controlled to prevent excessive runoff. Inadequate amounts of water may be more harmful than no water.

Re-seeding: Inspect seeded areas for failure and make necessary repairs and re-seedings within the same season, if possible.

- a. If vegetative cover is inadequate to prevent rill erosion, over-seed and fertilize in accordance with soil test results.
- b. If a stand has less than 40% cover, re-evaluate choice of plant materials and quantities of lime and fertilizer. The soil must be tested to determine if acidity or nutrient imbalances are responsible. Re-establish the stand following seedbed preparation and seeding recommendations.

Fertilization: Cool season grasses should begin to be fertilized 90 days after planting to ensure proper stand and density. Warm season fertilization should begin at 30 days after planting.

Apply maintenance levels of fertilizer as determined by soil test. In the absence of a soil test, fertilization should be as follows:

Cool Season Grasses

4 lbs. nitrogen (N)

1 lb. phosphorus (P)

Per 1000 ft.² per year

2 lbs. potash (K)

Seventy-five percent of the total requirements should be applied between September 1 and December 31st. The balance should be applied during the remainder of the year. More than 1 lb. of soluble nitrogen per 1000 ft.² should not be applied at any one time.

Warm Season Grasses

Apply 4-5 lbs. nitrogen (N) between May 1 and August 15th per 1000 ft.² per year.

Phosphorus (P) and Potash (K) should only be applied according to soil test.

Note: The use of slow-release fertilizer formulations for maintenance of turf is encouraged to reduce the number of applications and the impact on groundwater.

Additional Information on the Successful Establishment of Grasses and Legumes

See Appendix 3.32-b for "helpful hints" in achieving high success rates in grass or legume plantings.

APPENDIX 3.32-a

SEED QUALITY CRITERIA

Where certified seed is not available, the minimum requirements for grass and legume seed used in vegetative establishment are as follows:

- a. All tags on containers of seed shall be labeled to meet the requirements of the State Seed Law.
- b. All seed shall be subject to re-testing by a recognized seed laboratory that employs a registered seed technologist or by a state seed lab.
- c. All seed used shall have been tested within twelve (12) months.
- d. Inoculant - the inoculant added to legume seed in the seed mixtures shall be a pure culture of nitrogen-fixing bacteria prepared for the species. Inoculants shall not be used later than the date indicated on the container. Twice the supplier's recommended rate of inoculant will be used on dry seedings; five times the recommended rate if hydroseeded.
- e. The quality of the seed used shall be shown on the bag tags to conform to the guidelines in Table 3.32-E.

TABLE 3.32-E

QUALITY OF SEED*

	<u>Minimum Seed Purity (%)</u>	<u>Minimum Germination (%)</u>
<u>Legumes</u>		
Crownvetch	98	65**
Lespedeza, Korean	97	85**
Lespedeza, Sericea	98	85**
<u>Grasses</u>		
Bluegrass, Kentucky	97	85
Fescue, Tall (Improved, Turf-Type Cultivars)	98	85
Fescue, Tall (Ky-31)	97	85
Fescue, Red	98	85
Redtop	94	80
Reed Canarygrass	98	80
Perennial Ryegrass	98	90
Weeping Lovegrass	98	87
<u>Annuals</u>		
Annual Ryegrass	97	90
German Millet	98	85
Oats	98	80
Cereal Rye	98	85

* Seed containing prohibited or restricted noxious weeds should not be accepted. Seed should not contain in excess of 0.5% weed seed. To calculate percent pure, live seed, multiply germination times purity and divide by 100.

Example: Ky-31 Tall Fescue with a germination of 85 percent and a purity of 97 percent.

$$97 \times 85 = 8245. \quad 8245 \div 100 = 82.45 \text{ percent pure live seed.}$$

** Includes "hard seed"

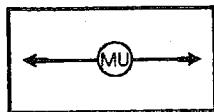
APPENDIX 3.32-b**KEYS TO SUCCESSFUL ESTABLISHMENT OF GRASSES AND LEGUMES****Planning**

Where feasible, grading operations should be planned around optimal seeding dates for the particular region. The most effective times for establishing perennial grass in Virginia generally extend from March through May and from August through October. Outside these dates, the probability of failure is much higher. If the time of year is not suitable for seeding a permanent cover (perennial species), a temporary cover crop should be planted. Temporary seeding of annual species (small grains, ryegrasses or millets) often succeeds during periods of the year that are unsuitable for seeding permanent (perennial) species.

Variations in weather and local site conditions can modify the effects of regional climate on seeding success. For this reason, mixtures including both cool and warm season species are preferred for low-maintenance cover, particularly in the Coastal Plain. Such mixtures promote cover which can adapt to a range of conditions. Many of these mixtures are not desirable, however, for high quality lawns, where variation in texture of the turf is inappropriate. It is important to note that in Virginia the establishment of 100% warm season grasses in a high quality lawn is limited to the extreme eastern portions of the Coastal Plain.

Selection

Species selection should be considered early in the process of preparing an erosion and sediment control plan. A variety of vegetation can be established in Virginia due to the diversity in both soils and climate. However, for practical, economical stabilization and long-term protection of disturbed sites, species selection should be made judiciously.


Seasonality must be considered when selecting species. Grasses and legumes are usually classified as warm or cool season in reference to their season of growth. Cool season plants realize most of their growth during the spring and fall and are relatively inactive or dormant during the hot summer months. Therefore, fall is the most favorable time to plant them. Warm season plants "green-up" late in the spring, grow most actively during the summer, and go dormant at the time of the first frost in fall. Spring and early summer are preferred planting times for warm season plants.

Seed Mixtures

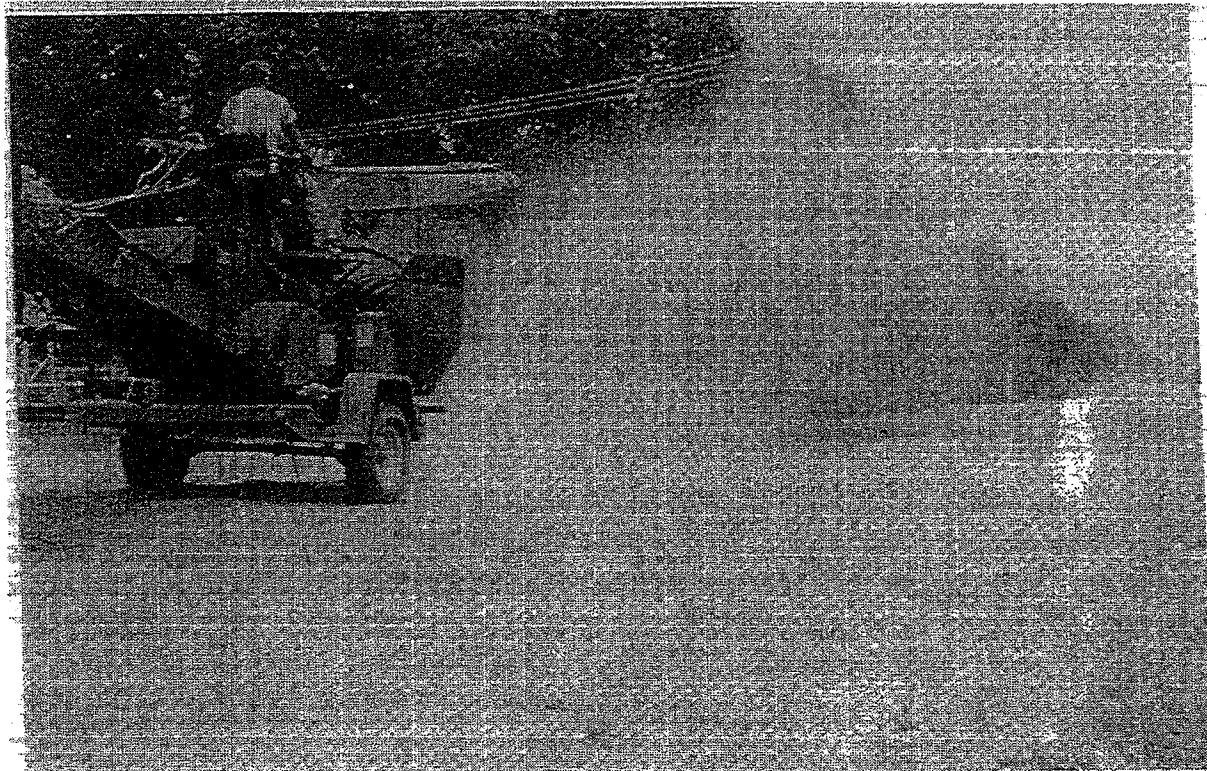
As previously noted, the establishment of high quality turf frequently involves planting one single species. However, in seedings for erosion control purposes, the inclusion of more than one species should always be considered. Mixtures need not be excessive in poundage or seed count. The addition of a quick-growing annual provides early protection and facilitates establishment of one or two perennials in a mix. More complex mixtures might include a quick-growing annual, one or two legumes and more than one perennial grass.

The addition of a "nurse" crop (quick-growing annuals added to permanent mixtures) is a sound practice for soil stabilization, particularly on difficult sites - those with steep slopes; poor, rocky, erosive soils; those seeded out the optimum seeding periods; or in any situation where the development of permanent cover is likely to be slow. The nurse crop germinates and grows rapidly, holding the soil until the slower-growing perennial seedlings become established.

STD & SPEC 3.35

MULCHING

Definition


Application of plant residues or other suitable materials to the soil surface.

Purposes

1. To prevent erosion by protecting the soil surface from raindrop impact and reducing the velocity of overland flow.
2. To foster the growth of vegetation by increasing available moisture and providing insulation against extreme heat and cold.

Conditions Where Practice Applies

1. Areas which have been permanently seeded (see Std. & Spec. 3.32, PERMANENT SEEDING) should be mulched immediately following seeding.

2. Areas which cannot be seeded because of the season should be mulched to provide some protection to the soil surface. An organic mulch should be used, and the area then seeded as soon weather or seasonal conditions permit. It is not recommended that fiber mulch be used alone for this practice; at normal application rates it just simply does not provide the protection that is achieved using other types of mulch.
3. Mulch may be used together with plantings of trees, shrubs, or certain ground covers which do not provide adequate soil stabilization by themselves.
4. Mulch shall be used in conjunction with temporary seeding operations as specified in TEMPORARY SEEDING, Std. & Spec. 3.31.

Planning Considerations

Mulches are applied to the soil surface to conserve a desirable soil property or to promote plant growth. A surface mulch is one of the most effective means of controlling runoff and erosion on disturbed land.

Mulches can increase the infiltration rate of the soil, reduce soil moisture loss by evaporation, prevent crusting and sealing of the soil surface, modify soil temperatures, and provide a suitable microclimate for seed germination.

Organic mulch materials, such as straw, wood chips, bark, and fiber mulch have been found to be the most effective.

Chemical soil stabilizers or soil binders should not be used alone for mulch. These materials are useful to bind organic mulches together to prevent displacement.

A variety of manufactured SOIL STABILIZATION BLANKETS AND MATTING (see Std. & Spec. 3.36) have been developed for erosion control in recent years. Some of these products can be used as mulches, particularly in critical areas such as waterways. They also may be used to hold other mulches to the soil surface.

The choice of materials for mulching will be based on the type of soil to be protected, site conditions, season and economics. It is especially important to mulch liberally in mid-summer and prior to winter, and on cut slopes and southern slope exposures.

Organic Mulches

Straw - The mulch most commonly used in conjunction with seeding. The straw should come from wheat or oats (free of troublesome weed seeds) and may be spread by hand or machine. Straw can be windblown and must be anchored down by an acceptable method.

Hay - May be used in lieu of straw where volunteers will not present a problem, and may be spread by hand or machine. Hay can be windblown and must also be anchored or tacked down.

Corn Stalks - These should be shredded into 4- to 6-inch lengths. Stalks decompose slowly and are resistant to displacement.

Wood Chips - Suitable for areas that will not be closely mowed, and around ornamental plantings. Chips decompose slowly and do not require tacking. They must be treated with 12 pounds of nitrogen per ton to prevent nutrient deficiency in plants; however, can be a very inexpensive mulch if chips are obtained from trees cleared on the site.

Bark Chips, Shredded Bark - These are by-products of timber processing which are used in landscaped plantings. Bark is also a suitable mulch for areas planted to grasses and not closely mowed. It may be applied by hand or mechanically and is not usually toxic to grasses or legumes; additional nitrogen fertilizer is not required.

Fiber Mulch - Used in hydroseeding operations and applied as part of the slurry. It creates the best seed-soil contact when applied over top of (as a separate operation) newly seeded areas. These fibers do not require tacking, although tacking agents or binders are sometimes used in conjunction with the application of fiber mulch. This form of mulch does not provide sufficient protection to highly erodible soils. Additionally, fiber mulch will not be considered adequate mulch when used during the dry summer months or when used for late fall mulch cover. Use straw mulch during these periods. Fiber mulch may be used to tack (anchor) straw mulch. This treatment is well suited for steep slopes, critical areas, and areas susceptible to displacement.

There are other organic materials which make excellent mulches but are only available locally or seasonally. Creative use of these materials can reduce costs.

Chemical Mulches and Soil Binders

A wide range of synthetic, spray-on materials are marketed to stabilize and protect the soil surface. These are emulsions or dispersions of vinyl compounds, rubber or other substances which are mixed with water and applied to the soil. They may be used alone in some cases as temporary stabilizers, or in conjunction with fiber mulches or straw.

When used alone, chemical mulches do not have the capability to insulate the soil or retain soil moisture that organic mulches have. This soil protection is also easily damaged by traffic. Application of these mulches is usually more expensive than organic mulching, and the mulches decompose in 60-90 days.

Blankets and Matting

Field experience has shown that plastic netting, when used alone, does not retain soil moisture or modify soil temperature. In some cases it may stabilize the soil surface while

grasses are being established, but is primarily used in grassed waterways and on slopes to hold straw or similar mulch in place.

Jute mesh and other soil stabilization blankets are good choices for mulching on difficult slopes and in minor drainage swales. Most of the soil stabilization mattings (used to create a permanent matrix for root growth within the soil) must receive mulching in order to properly stabilize an area. Notably, some manufacturers have recently developed permanent mattings which include self-contained, temporary mulching materials; however, these measures will have to meet the requirements noted in Std. & Spec. 3.36, SOIL STABILIZATION BLANKETS AND MATTING, before they can be recommended for use on steep slopes and in channel flow situations.

The most critical aspect of installing blankets and mats is obtaining firm, continuous contact between the material and the soil. Without such contact, the material may fail and thereby allow erosion to occur. It is important to use an adequate number of staples and make sure the material is installed properly in order to maximize soil protection. These products are discussed in more detail in Std. & Spec. 3.36, SOIL STABILIZATION BLANKETS & MATTING.

Specifications

Organic Mulches

Organic mulches may be used in any area where mulch is required, subject to the restrictions noted in Table 3.35-A.

Materials: Select mulch material based on site requirements, availability of materials, and availability of labor and equipment. Table 3.35-A lists the most commonly used organic mulches. Other materials, such as peanut hulls and cotton burs, may be used with the permission of the local Plan-Approving Authority.

Prior to mulching: Complete the required grading and install needed sediment control practices.

Lime and fertilizer should be incorporated and surface roughening accomplished as needed. Seed should be applied prior to mulching except in the following cases:

- a. Where seed is to be applied as part of a hydroseeder slurry containing fiber mulch.
- b. Where seed is to be applied following a straw mulch spread during winter months.

TABLE 3.35-A
ORGANIC MULCH MATERIALS AND APPLICATION RATES

MULCHES:	RATES:		NOTES:
	Per Acre	Per 1000 sq. ft.	
Straw or Hay	1½ - 2 tons (Minimum 2 tons for winter cover)	70 - 90 lbs.	Free from weeds and coarse matter. Must be anchored. Spread with mulch blower or by hand.
Fiber Mulch	Minimum 1500 lbs.	35 lbs.	Do not use as mulch for winter cover or during hot, dry periods.* Apply as slurry.
Corn Stalks	4 - 6 tons	185 - 275 lbs.	Cut or shredded in 4-6" lengths. Air-dried. Do not use in fine turf areas. Apply with mulch blower or by hand.
Wood Chips	4 - 6 tons	185 - 275 lbs.	Free of coarse matter. Air-dried. Treat with 12 lbs nitrogen per ton. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.
Bark Chips or Shredded Bark	50 - 70 cu. yds.	1-2 cu. yds.	Free of coarse matter. Air-dried. Do not use in fine turf areas. Apply with mulch blower, chip handler, or by hand.

* When fiber mulch is the only available mulch during periods when straw should be used, apply at a minimum rate of 2000 lbs./ac. or 45 lbs./1000 sq. ft.

Source: Va. DSWC

Application: Mulch materials shall be spread uniformly, by hand or machine.

When spreading straw mulch by hand, divide the area to be mulched into approximately 1,000 sq. ft. sections and place 70-90 lbs. (1½ to 2 bales) of straw in each section to facilitate uniform distribution.

Mulch Anchoring: Straw mulch must be anchored immediately after spreading to prevent displacement. Other organic mulches listed in Table 3.35-A do not require anchoring. The following methods of anchoring straw may be used:

1. Mulch anchoring tool (often referred to as a Krimper or Krimper Tool): This is a tractor-drawn implement designed to punch mulch into the soil surface. This method provides good erosion control with straw. It is limited to use on slopes no steeper than 3:1, where equipment can operate safely. Machinery shall be operated on the contour.
2. Fiber Mulch: A very common practice with widespread use today. Apply fiber mulch by means of a hydroseeder at a rate of 500-750 lbs./acre over top of straw mulch or hay. It has an added benefit of providing additional mulch to the newly seeded area.
3. Liquid mulch binders: Application of liquid mulch binders and tackifiers should be heaviest at edges of areas and at crests of ridges and banks, to prevent displacement. The remainder of the area should have binder applied uniformly. Binders may be applied after mulch is spread or may be sprayed into the mulch as it is being blown onto the soil.

The following types of binders may be used:

- a. Synthetic binders - Formulated binders or organically formulated products may be used as recommended by the manufacturer to anchor mulch.
- * b. Asphalt - Any type of asphalt thin enough to be blown from spray equipment is satisfactory. Recommended for use are rapid curing (RC-70, RC-250, RC-800), medium curing (MC-250, MC-800) and emulsified asphalt (SS-1, CSS-1, CMS-2, MS-2, RS-1, RS-2, CRS-1, and CRS-2).

Apply asphalt at 0.10 gallon per square yard (10 gal./1000 sq. ft. or 430 gal./acre). Do not use heavier applications as it may cause the straw to "perch" over rills. All asphalt designations are from the Asphalt Institute Specifications.

* Note: This particular method is not used as commonly today as it once was in the past. The development of hydraulic seeding equipment promoted the industry

to turn to synthetic or organically based binders and tackifiers. When this method is used, environmental concerns should be addressed to ensure that petroleum-based products do not enter valuable water supplies. Avoid applications into waterways or channels.

4. **Mulch nettings:** Lightweight plastic, cotton, or paper nets may be stapled over the mulch according to manufacturer's recommendations.
5. **Peg and twine:** Because it is labor-intensive, this method is feasible only in small areas where other methods cannot be used. Drive 8- to 10-inch wooden pegs to within 3 inches of the soil surface, every 4 feet in all directions. Stakes may be driven before or after straw is spread. Secure mulch by stretching twine between pegs in a criss-cross-within-a square pattern. Turn twine 2 or more times around each peg.

Chemical Mulches

Chemical mulches* may be used alone only in the following situations:

- a. Where no other mulching material is available.
- b. In conjunction with temporary seeding during the times when mulch is not required for that practice.
- c. From March 15 to May 1 and August 15 to September 30, provided that they are used on areas with slopes no steeper than 4:1, which have been roughened in accordance with SURFACE ROUGHENING, Std. & Spec. 3.29. If rill erosion occurs, another mulch material shall be applied immediately.

* **Note:** Chemical mulches may be used to bind other mulches or with fiber mulch in a hydroseeded slurry at any time. Manufacturer's recommendations for application of chemical mulches shall be followed.

Maintenance

All mulches and soil coverings should be inspected periodically (particularly after rainstorms) to check for erosion. Where erosion is observed in mulched areas, additional mulch should be applied. Nets and mats should be inspected after rainstorms for dislocation or failure. If washouts or breakage occur, re-install netting or matting as necessary after repairing damage to the slope or ditch. Inspections should take place up until grasses are firmly established. Where mulch is used in conjunction with ornamental plantings, inspect periodically throughout the year to determine if mulch is maintaining coverage of the soil surface; repair as needed.